

Hybridsysteme

Innovative Wärmetechnologie auf kleinstem Raum

Hybridsysteme - Innovation mit Spitzenleistung

Gesellschaftliche Veränderungen, Globalisierung und Klimawandel stellen auch den Heizungsmarkt vor große Herausforderungen. Mit unseren Hybridsystemen liefern wir die passenden Lösungen dafür. Im Baukastenprinzip kombinieren Sie individuell und flexibel nach Ihren Wünschen und Anforderungen. Damit reduzieren Sie den Energiebedarf nachhaltig und sparen Heizkosten – vom ersten Tag an.

Hybridsysteme - Energiekosten senken

Herzstück der Remeha-Hybridtechnologie im Wohnungsbau ist der Calenta Ace als vormontierte Einheit mit 390 und 690 Liter Speicher, den Sie nach Bedarf mit einer Wärmepumpe, Solar oder einem BHKW kombinieren können. Das Hybridsystem wählt intelligent immer die günstigste Energiequelle aus und spart somit Kosten.

Mit einer innovativen Heizungsanlage von Remeha investieren Sie in energiesparende Technologien, die zudem in Deutschland durch Förderprogramme unterstützt werden – ein weiterer Kostenvorteil für Sie und Ihre Kunden.

Hybridsysteme – nachhaltig zum Schutz der Umwelt

Viele Unternehmen schreiben sich Nachhaltigkeit auf die Fahnen, wir produzieren sie: Mit Remeha Heizsystemen reduzieren Sie deutlich die CO₂-Emissionen. Somit leistet Spitzentechnologie von Remeha einen wichtigen Beitrag im Kampf gegen den Klimawandel. Seien Sie dabei - für die Zukunft der nachfolgenden Generationen.

Gemeinsam einfach stark

Vertrauen Sie auf mehr als 80 Jahre Remeha Erfahrung, kundennahen Service sowie eine gelebte Partnerschaft und sprechen Sie uns persönlich an. Wir freuen uns, Ihnen heute schon innovative Heizsysteme von morgen zu liefern.

www.remeha.de

Ein-/Zwei-

familienhaus

Nachhaltigkeit

Konnek-tivität

produziert Strom

Calenta eLina 390/690

Hybridsystem Wärme und Strom

- > Für Ein- und Zweifamilienhäuser
- > Leistungsbereich thermisch bis 30 kW
- > Leistungsbereich elektrisch bis 4 kW bei eLina 4.0

Ein-/Zweifamilienhaus haltigkeit

Nach-

Konnek-

CalentaHP 390/690

Umweltfreundliches Wärmepumpen-Hybridsystem

- > Für Ein- und Zweifamilienhäuser
- > Leistungsbereich thermisch bis 25 kW (Calenta Ace)
- > Wärmepumpe 6 kW

Auf einen Blick!

Vorteile des Systems

- > Innovation Produktion von Wärme und Strom
- > Fit for future unabhängiger vom Energiemarkt
- > Plug & Play hoher Vorfertigungsgrad des Systems
- › Hohe Flexibilität ein System für alle Anwendungen
- > Einfache Anwendung Zeitersparnis und Fehlervermeidung
- Zukunftssicherheit kontinuierliche Erweiterung der Systemkomponenten
- > Umweltfreundliche Engergie zu günstigen Preisen

Konnektivität

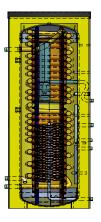
eHP-Mono 390/690

Wärmeerzeugung ausschließlich auf elektrischer Basis

- > Für Neubauten mit geringem Heizbedarf und ohne Gasleitung
- > 8,5 kW oder 11,2 kW Luft-Wasser-Wärmepumpe und optional mit zusätzlichem 3 kW Heizstab

Bestandteile der Hybridsysteme

Gas-Brennwertkessel Calenta Ace


Als High-Tech Brennwertkessel steht der Calenta Ace für Komfort und Effizienz. Er verfügt über einen äußerst kompakten Wärmetauscher aus Aluminiumguss mit Beschichtung, den Ultra Responsive Heat Exchanger. Seine geringen Abmessungen sorgen für höchste Leistung. Kesselelektronik und die Remeha Regelungsplattform Ace Controls bilden zusammen das "Gehirn" des Kessels und stimmen das Zusammenspiel aller Komponenten aufeinander ab. Dies sorgt für geringsten Eigenenergieverbrauch des Wärmeerzeugers. Im Hybridsystem sichert der Calenta Ace die notwendige Heizenergie bei Energie-Peaks und garantiert so immer Wärmekomfort im

Calenta Ace

Frischwasserspeicher 390/690 Liter

Der Friwa-Speicher erfüllt alle Anforderungen an die legionellenfreie, hygienische Trinkwassererwärmung. Dabei ist er als Pufferspeicherbehälter einfach konstruiert: funktional und für den Heizungsfachmann einfach einzubauen. Der Speicher ist mit Heizungswasser gefüllt, das sich mittels der im Hybridsystem eingesetzten Wärmeerzeuger wie Brennwertkessel, Solaranlage, BHKW oder Wärmepumpe aufheizt. Das kalt einfließende Trinkwasser fließt durch ein im Speicher integriertes Edelstahlwellrohr und erwärmt sich beim Durchfluss auf die gewünschte Temperatur - immer angepasst an den aktuellen Bedarf.

Frischwasserspeicher

Sonnenkollektoren

Die RemaSol Flachkollektoren vereinen viele Vorteile auf Ihrem Dach. Neben hoher Leistung durch eine optimale Wärmedämmung zeichnen sie sich durch ihr modernes Design aus, das sich unauffällig in jedes Dach einfügt. Mit dem Quick Connect Anschluss-System montieren Sie die Kollektoren schnell und einfach - und all das zu einem sehr guten Preis.

RemaSol D 230 Flachkollektor

ERP Skalierung

Raumheizgeräte	A++ bis G	Verbundanlagen Raumheizung	A+++ bis G
Warmwasserbereiter	A+ bis F	Verbundanlagen Warmwasserbereitung	A+++ bis G
Warmwasserspeicher	A+ bis F	Lastprofile	L bis XXL

Wärmepumpe

Die Luft-/Wasser-Wärmepumpe als Monoblock vereinfacht maßgeblich die Installation, da kein Eingreifen in den Kältekreislauf notwendig ist. Gut isolierte Verbindungsleitungen mit Wasser-Frostschutzgemisch übertragen die Wärme in die Speichereinheit. Die Invertertechnologie der Wärmepumpe stellt das aktuelle Optimum in der Luft-/Wasser-Wärmepumpentechnologie dar und bietet mit bis zu 60°C Vorlauftemperatur ein Höchstmaß an Heizkomfort.

AWHP

Kraft-Wärme-Kopplung mit der eLina

Mit dem BHKW eLina werden Sie unabhängig in Sachen Energie und produzieren Strom und Wärme einfach selbst. So werden Sie vom Verbraucher zum unabhängigen Strom- und Wärmeproduzenten. Das BHKW-System ist dabei einfach: Ein Verbrennungsmotor treibt einen Hochleistungsgenerator an, der Strom zur Eigennutzung erzeugt. Bei der Verbrennung entsteht gleichzeitig Wärme, die zum Heizen des Hauses genutzt wird. So entsteht eine Energienutzung von bis zu 90 % der investierten Energie – und dies in Form von Wärme und Strom.

Im Hybridsystem harmoniert die eLina perfekt mit dem Calenta Ace – für technisch perfekte Höchstleistung und Nutzerkomfort.

Regelungssystem

Der Calenta Ace wird über die Regelungsplattform Ace Controls gesteuert. Alle Heizkreise können so in einer Regelung perfekt eingestellt werden und die Systemkomponenten arbeiten optimal zusammen. In Kombination mit dem eTwist kann dieser im Wohnzimmer als Fernbedienung oder unterwegs per App die Anlage fernsteuern und die optimale Temperatur einstellen. Der RemaCal Wärmepreis-Vergleichsrechner steuert den kostenoptimierten Einsatz bei mehreren Wärmeproduzenten

eTwist, Ace Control, RemaCal

Die Kombination von thermischer Solaranlage und Gas-Brennwertkessel CalentaSol 390/690

CalentaSol 390/690 — innovativ Heizen mit bewährter Remeha Technologie

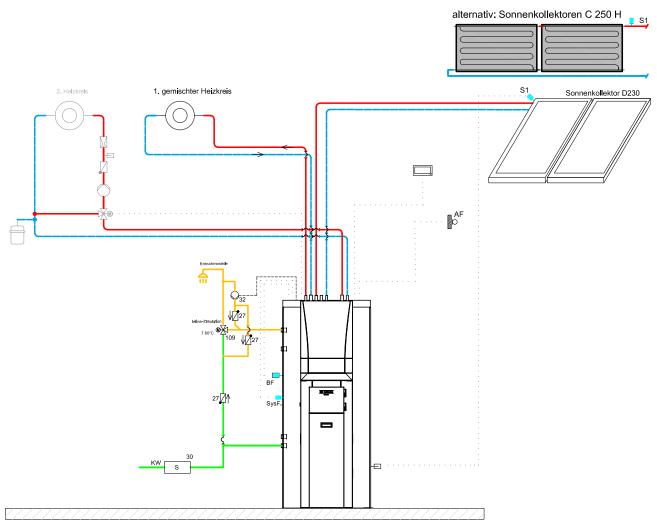
Zum CalentaSol Hybridsystem gehört neben der Basiseinheit Solar-Frischwasser-Speicher mit Calenta Ace Brennwertkessel, eine Solarkomplettstation mit Hocheffizienzpumpe und Mischerkreis sowie die integrierte Ace Controls Regelungsplattform. Damit dient es zur hocheffizienten Trinkwassererwärmung und Raumheizung. Die Trinkwassererwärmung im Speicher erfolgt legionellenfrei über ein Edelstahlwellrohr. Alle Komponenten sind in einem formschönen Gehäuse untergebracht, so dass Kabel und Rohre unsichtbar bleiben. Der Speicherbehälter aus Stahlblech hat eine geringe Aufbauhöhe und kann auch in niedrigen Heizungskellern installiert werden. Eine hervorragende Dämmung aus dickem Vlies mit einer weißen Kunststoffschicht macht die CalentaSol Hybridsysteme zur starken Lösung für jedes Wohnhaus.

CalentaSol Auf einen Blick!

Vorteile des Systems

- Aktuelles Solar-Hybridsystem mit umfangreichen Funktionen auf kleinstem Raum
- > Neue Regelungsplattform Ace Control mit Farbdisplay
- Schnelle und einfache Montage dank Modulbauweise und Vorverdrahtung
- > Modernes Design
- > Legionellenfreie Trinkwassererwärmung im Durchlauftprinzip
- > Speicher mit vier Speicherzonen für perfekte Wärmeschichtung im System

Sie bekommen:


- > Solar-Komplettstation
- > Integrierte Solarregelung
- > Brennwertkessel mit Hocheffizienzpumpe und Dreiwegeumschaltventil
- > Integrierte Kessel- und Heizkreisregelung
- > Heizkreisstation mit Hocheffizienzpumpe
- > Abgasanschlussbogen DN 60/100
- > Kesselinnenraumbeleuchtung

Technische Daten

Frischwasserspeicher

Frischwasserspeicher			CalentaSol 390	CalentaSol 690
	Gesamtinhalt Behälter	Liter	385	690
	Heizfläche Solarwärmetauscher	m²	1,6 - CU	1,6 - CU
	Inhalt Solar-Heizschlange	Liter	6	6
	Inhalt Trinkwasserheizschlange	Liter	27	27
	Heizleistung	kW	25	25
	Dauerleistung bei ΔT 35 K $^{(1)}$	Liter/h	590	606
	Zapfleistung bei ΔT 30 K $^{(1)}$	Liter/10 Min	200	270
	NL-Zahl		2,0	3,1
	Bereitschaftsverluste			
	bei ∆T 45 K, (V _{AUX})	kWh/24 h	1,4	1,35
	bei ∆T 45 K, (V _{Gesamt})	kWh/24 h	2,4	2,95
	Leergewicht gesamt	kg	272	392

⁽¹⁾ Kaltwassereintrittstemp.: 10 °C, Speichertemp. 70 °C, Durchfluss 2 m^3/h , Primärvorlauftemperatur: 80 °C

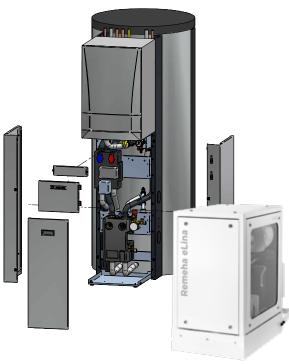
Hydraulikbeispiel

CalentaSol 390/690

Flachkollektor

Flachkollektor		RemaSol D 230	C 250 V/H
Kollektorfläche Brutto (Ag)	m²	2,3	2,51/2,51
Absorberfläche (Aa)	m²	2,13	2,38/2,38
Aperturfläche (Ac)	m²	2,13	2,35/2,35
Absorptionsfaktor (α)		95+/-2%	95 +/- 1%
Emission (ε)		5+/-2%	5 +/- 1%
Füllvolumen Mäander	Liter	1,9	2,3/2,7
Optischer Wirkungsgrad (η0)		0,82	0,82/0,82
Winkelkorrekturfaktor iam 50°	°C	0,92	0,92
Wärmeverlustbeiwert k1	W/m².K	3,941	3,68/3,68
Wärmeverlustbeiwert k2	W/m².K2	0,015	0,0129/0,0129
Empfohlener Wärmeträger		Tyfocor LS Fertiggemisch	Tyfocor LS Fertiggemisch
Hydraulischer Anschluss (Cu)	mm	12	22/22
Leergewicht	kg	40	47/47

Betriebsbedingungen			
Minimaler Betriebsüberdruck	bar	3	3/3
Maximaler Betriebsüberdruck	bar	10	10/10
Zul. Vorlauftemperatur	°C	120	120/120
Stillstandstemperatur	°C	200	200/200


D230

Die Kombination von BHKW und Gas-Brennwertkessel Calenta eLina 390/690

Calenta eLina 390/690 - vom Verbraucher zum Stromproduzenten

Mit der Calenta eLina 390/690 sparen Sie an den Energiekosten und nicht am Komfort. Dank der intelligenten Energienutzung des BHKW decken Sie nicht nur den Wärmebedarf sondern produzieren gleichzeitig Strom zur Eigennutzung. Die Calenta eLina wird so auch zur Ladestation für ihr e-Bike und e-Auto. Das macht Sie unabhängig von steigenden Energiekosten und den großen Energieversorgern. Gleichzeitig schonen Sie Ressourcen und leisten aktiv einen Beitrag gegen den Klimawandel. Die Calenta eLina benötigt ein Minimum an Platz bei maximaler Leistung. Sie bietet Ihnen mit der Möglichkeit zur Fernwartung und -überwachung ein Maximum an Sicherheit - und den Weg zur Unabhängigkeit in der Energieversorgung.

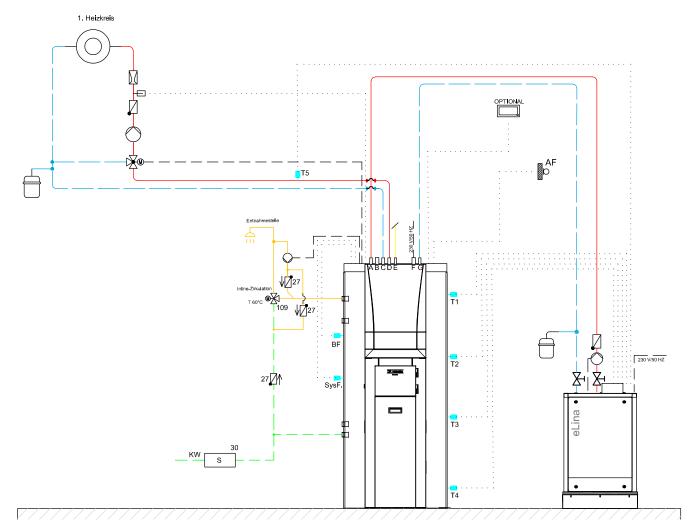
Calenta eLina 390/690 Explosionszeichnung

Calenta eLina Auf einen Blick!

Vorteile des Systems

- > Komplettes Hybridsystem für gehobene Ansprüche
- > Integrierte Regelungsplattform mit Farbdisplay
- Dank Plug & Play geringer Montageaufwand und hohe Fehlersicherheit
- > Kombination aus Gas-Brennwertkessel mit mini BHKW
- > Modulierende Betriebsweise beider Komponenten
- > Mini BHKW mit Verbrennungsmotor
- > Extrem leise, lange Wartungsintervalle (10.000 Betriebstunden bei eLina 690-4.0)
- > Ladetaste für e-Auto
- > Hochleistungs-Frischwasserspeicher mit Montagerahmen

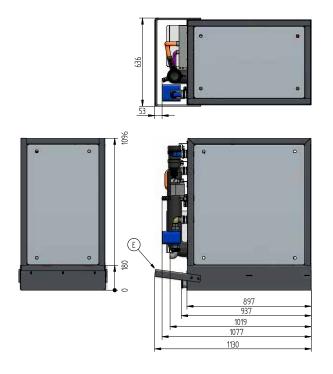
Sie bekommen

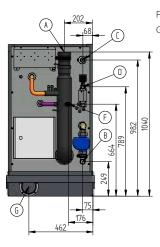

- > Speichereinheit mit Anbausatz und Hygienespeicher
- > Hochwertige Speicher-Wärmedämmung
- > Gemischter Heizkreis mit Hocheffizienzpumpe
- > Kompletter Verrohrungssatz
- > Calenta Ace Gas-Brennwertkessel
- > Witterungsgeführte Kessel- und Heizkreis-Regelung
- Aufeinander abgestimmte Wärmerzeuger, wo das mini BHKW den Vortritt hat, die Grundwärme zu liefern
- Mini-BHKW mit 2 kW elektrischer Leistung oder mit 4 kW elektrischer Leistung bei eLina 690-4.0

Technische Daten

Frischwasserspeicher

Frischwasserspeicher			Calenta eLina 390	Calenta eLina 690
	Inhalt Behälter	Liter	385	690
	Heizfläche Kupfer-Glattrohrtauscher	m²	1,6 - CU	1,6 - CU
	Inhalt Kupfer-Glattrohrtauscher	Liter	6	6
n n	Inhalt Trinkwasserheizschlange	Liter	27	27
	Heizleistung	kW	25	25
	Dauerleistung bei △T 35 K (1)	Liter/h	590	606
	Zapfleistung bei ΔT 30 K (1)	Liter/10 Min	200	270
	NL-Zahl		2,0	3,1
	Bereitschaftsverluste			
	bei ∆T 45 K, (V _{AUX})	kWh/24 h	1,4	1,35
	bei ∆T 45 K, (V _{Gesamt})	kWh/24 h	2,4	2,95
	Leergewicht gesamt	kg	270	390


⁽¹⁾ Kaltwassereintrittstemp.: 10 °C, Speichertemp. 70 °C, Durchfluss 2 m^3/h , Primärvorlauftemperatur: 80 °C



Calenta eLina 390/690

Effiziente KWK - Technik

кwк		eLina 2.0	eLina 4.0
Nennleistung elektrisch	kW _{el}	2	4
Nennleistung thermisch	kW_{th}	5,2	8,8
Leistungsmodulation el.	kW_{el}	1,1-2,0	2,0-4,0
Leistungsmodulation th.	kW_{th}	3,8-5,2	5,9-8,8
Vorlauftemperatur (± 5 °C)	°C	75	75
Rücklauftemperatur (± 5 °C)	°C	25-65	25-65
Energieeinsatz	kWh (Hi)	7,19	13,11
Stromkennzahl		0,4	0,5
Primärenergiefaktor f		0,462	0,406
PEE	%	27,9	30,3
Gesamtwirkungsgrad	%	100,1	101,0
Schallleistungspegel	dB(A)	61	66
Abmessungen L/B/H	mm	1160/620/1100	1160/620/1100
Inhalt Motoröl	1	17	17
Gewicht	kg	410	350
Wartungsintervall	Bh	15000	10000
Gesamtluftbedarf Modul in Feuerstätte	m³/h	114,7	126,8
zul. Gegendruck Abluftführung	Pa	150	150
Abgastemperatur	°C	50	50
Abgasmassenstrom (feucht)	kg/h	16	28
Abgasvolumenstrom (trocken)	Nm³/h	13	23
Abgasgegendruck max.	Pa	150	150
Abgasgegendruck max. bei Kesselkaskaden	Pa	150	150

A Abgas & Abluft DN 80
B Rücklauf R1
C Vorlauf R1
D Brennstoff Rp 1/2
E Schutzbügel (demontierbar)
F Kodensat R 3/4

F Kodensat R 3/4 G Zuluft DN 100

Die Kombination von Monoblock Luft-Wasser-Wärmepumpe und Gas-Brennwertkessel CalentaHP 390/690

CalentaHP 390/690

CalentaHP 390/690 - höchste Effizienz bei Trinkwassererwärmung und Raumheizung

Das CalentaHP Hybridsystem verknüpft über den intelligenten FRIWA-Speicher einen Gas-Brennwertkessel mit einer Luft-Wasser-Wärmepumpe. Ihre Heizung verfügt so über zwei Wärmeerzeuger, die abgestimmt aufeinander Wärme für Heizung und Warmwasser produzieren. Der Speicherbehälter aus Stahlblech hat eine geringe Aufbauhöhe und kann in jedem Heizungskeller installiert werden. Die Trinkwassererwärmung erfolgt legionellenfrei über ein Edelstahlwellrohr. Der modular aufgebaute Frischwasser-Kombispeicher bietet Anschlussmöglichkeiten für zusätzliche Wärmeerzeuger. Alle Komponenten sind im Gehäuse derart untergebracht, dass Kabel und Rohre unsichtbar bleiben. Zum CalentaHP Hybridsystem gehören neben einem Frischwasser-Kombispeicher und dem leistungsstarken Brennwertkessel Calenta Ace eine Heizkreisstation mit Hocheffizienzpumpe und Mischer und eine Wärmepumpen-Komplettstation. Die intregierte Wärmepumpenregelung RemaCal steuert das System so, dass immer der günstigere Wärmeerzeuger den Vorrang hat. Für maximale Energieeffizienz.

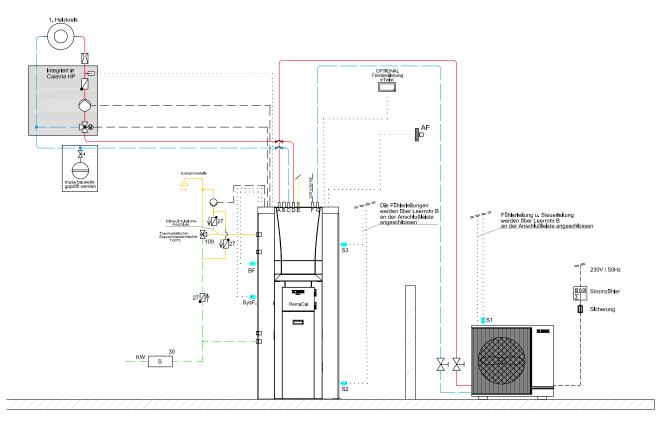
Explosionszeichnung CalentaHP 390/690

CalentaHP Auf einen Blick!

Vorteile des Systems

- Modernes Wärmepumpen-Hybridsystem mit umfangreichen Funktionen auf kleinstem Raum
- > Monoblock Wärmepumpe mit verbesserter Ventilatorgeometrie und Metallgehäuse
- > Geringe Geräuschbelastung
- \rightarrow COP = 3,99 (A2/W35)
- > Integrierte Regelungsplattform mit Farbdisplay
- > Legionellenfreie Trinkwassererwärmung im Durchlaufprinzip
- > Schnelle und einfache Montage dank Modulbauweise und Vorverdrahtung
- > Speicher mit vier Speicherzonen für perfekte Wärmeschichtung im System

Sie bekommen

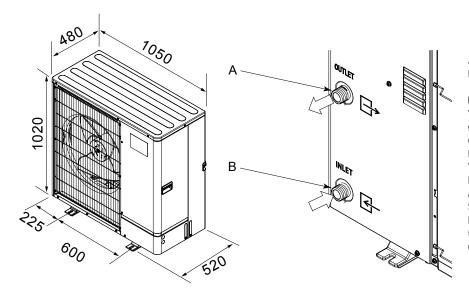

- > Speichereinheit mit Anbausatz und Hygienespeicher
- > Integrierte Wärmepumpen-Komplettstation
- > RemaCal Wärmepreis-Vergleichsrechner
- > Luft-Wasser-Wärmepumpe
- > Brennwertkessel mit Hocheffizienzpumpe und Dreiwegeumschaltventil
- > Kessel- und Heizkreisregelung
- > Heizkreisstation mit Hocheffizienzpumpe und Mischer
- > Wärmepumpen-Ausdehnungsgefäß für 2,5 Liter
- > Abgasanschlussbogen DN 60/100
- > Kesselinnenraumbeleuchtung

Technische Daten

Frischwasserspeicher

Frischwasserspeicher			CalentaHP 390-6	CalentaHP 690-6
	Gesamtinhalt Behälter	Liter	385	690
	Heizfläche Wärmepumpentauscher	m²	1,6 - CU	1,6 - CU
	Inhalt Wärmepumpentauscher	Liter	6	6
	Inhalt Trinkwasserheizschlange	Liter	27	27
	Fläche Trinkwasserheizschlange	m²	4,92	6
	Heizleistung	kW	25	25
	Dauerleistung bei ΔT 35 K $^{(1)}$	Liter/h	613	606
	Zapfleistung bei ΔT 30 K ⁽¹⁾	Liter/10 Min	200	270
	NL-Zahl (nur Bereitschaftsteil)	_	2	3,1
	Bereitschaftsverluste			
	bei ∆T 45 K, (V _{AUX})	kWh/24 h	1,4	1,35
	bei ∆T 45 K, (V _{Gesamt})	kWh/24 h	2,4	2,95
	Leergewicht gesamt	kg	270	390

(1) Kaltwassereintrittstemp.: 10 °C, Speichertemp. 70 °C, Durchfluss 2 m³/h, Primärvorlauftemperatur: 80 °C



Hydraulikbeispiel

CalentaHP 390/690

Monoblock Luft-/Wasser-Wärmepumpe

Power Inverter Kompakt - Außengerät		AWHP 6 MR
Heizleistung A2/W35	kW	6,0
Leistungsaufnahme Heizen A2/W35	kW	1,60
COP A7/W35	_	4,83
COP A2/W35	_	3,64
Heizleistung A7/W35	kW	6,0
Leistungsaufnahme Heizen A7/W35	kW	1,24
Schalldruckpegel	dB (A)	58
Abmessungen BxTxH	mm	1050/480/1220
Gewicht	kg	97
Wasserseitige Anschlüsse Ø	mm	25,4
Kältemittelmenge (Kältemittel - R410 A)	kg	2,4
Spannungsversorgung	V/Phase/Hz	220-240/1/50
Max. Betriebsstrom	А	13,0
Empf. Sicherungsgröße	А	16
Kompressor		Invertertechnologie
Arbeitsbereich	°C	-15/35
Max. Vorlauftemperatur	°C	60
Durchflussmengen min./max.	l/min	11,4 - 21,5
Durchflussmengen min./max.	l/h	660 - 1290

A Wärmepumpenvorlauf R1 B Wärmepumpenrücklauf R1

Hinweis: Führen Sie im
Wasserleitungssystem Maßnahmen
gegen Einfrieren durch.
(Isolation von Wasserrohren,
Pumpensicherungssystem,
Verwendung eines bestimmten
Prozentanteils von Ethylenglykol
anstelle normalen Wassers) Isolieren
Sie die Wasserleitungen richtig.
Der Leistungsgrad kann beeinträchtigt werden, wenn die Isolierung
unzureichend ist.

Wärmeerzeugung ausschließlich auf elektrischer Basis eHP-Mono 390/690

eHP-Mono 390/690 holt Umweltenergie ins Haus

Das Kombisystem eHP-Mono holt die Energie aus der Umwelt direkt ins Haus und das ganz ohne Gas als Primärenergie! Besonders geeignet ist es für Neubauten mit niedrigem Heizbedarf und ohne Gasanschluss. Die eHP-Mono garantiert Heizwärme und Warmwasserversorgung ausschließlich auf elektrischer Basis.

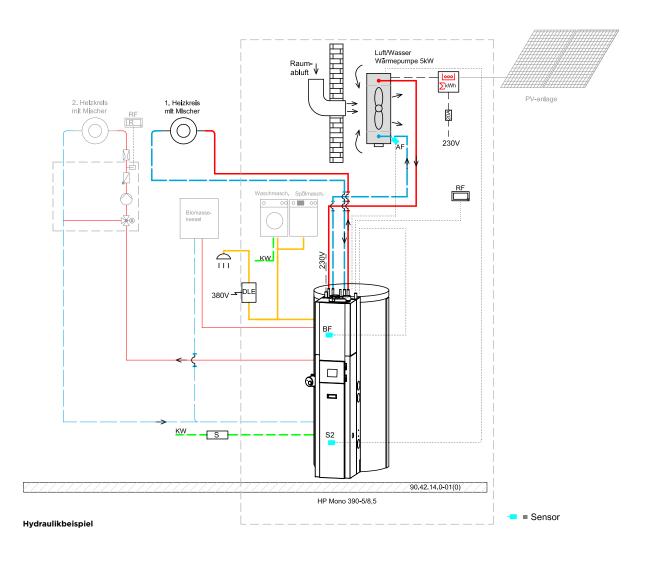
Explosionszeichnung eHP-Mono 390/690

eHP-Mono Auf einen Blick!

Vorteile des Systems

- Monoblock Wärmepumpe mit verbesserter Ventilatorgeometrie und Metallgehäuse
- > Geringe Geräuschbelastung
- Preiswertes und sicheres Wärmesystem, da kein Abgassystem und kein Gasanschluss notwendig
- > Mit weiteren Wärmeerzeugern kombinierbar
- > Mögliche Nutzung von eigenerzeugtem Solarstrom
- > EnEV-konform
- > Legionellenfreie Warmwasserbereitung im Durchlaufprinzip
- > Ohne Kälteleitung zu montieren
- > COP = 3,36 (A2/W35 AWHP 8 TR)
- \rightarrow COP = 3,34 (A2/W35 AWHP 11 TR)
- > Heizen ohne Gas und Öl

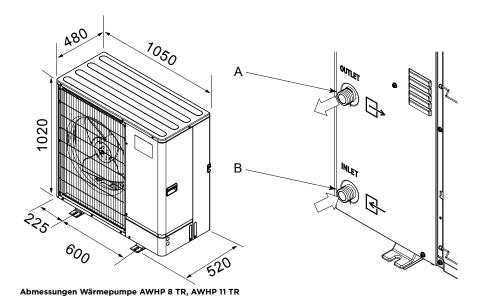
Sie bekommen


- > Speichereinheit mit Anbausatz und Hygienespeicher
- > Wärmepumpen-Komplettstation
- > Luft-Wasser-Wärmepume
- > iSensePro Heizkreisregelung
- > RemaCal Mono Wärmepumpenregler
- > Heizkreisstation mit Hocheffizienzpumpe und Mischer
- > Wärmepumpenausdehnungsgefäß 2,5 Liter

Technische Daten

Frischwasserspeicher

Frischwasserspeicher			eHP-Mono 390-8	eHP-Mono 390-11	eHP-Mono 690-8	eHP-Mono 690-11
	Gesamtinhalt Behälter	Liter	385		69	90
	Heizfläche Wärmepumpentauscher	m²	1,6 -	- CU	1,6 -	· CU
	Inhalt Wärmepumpentauscher	Liter		6	(5
	Fläche Trinkwasserheizschlange	m²	4,	92	4,92	
	Inhalt Trinkwasserheizschlange	Liter	2	27	2	7
	Dauerleistung bei \triangle 35 K (1)	l/h	195	270	195	265
	Dauerleistung bei \triangle 35 K (1)	kW	8	11	8	11
	Dauerleistung bei \triangle 35 K (2)	l/h	270	340	265	330
	Dauerleistung bei \triangle 35 K (2)	kW	11	14	11	14
	Zapfleistung bei Δ 30 K	I/10 min	22	20	30	00
	Bereitschaftsverluste					
	bei \triangle 45 K, (V_{AUX})	kWh/24h	1,	,4	1,3	35
	bei \triangle 45 K, (V _{Gesamt})	kWh/24h	2	,5	2,	95
	Leergewicht gesamt	kg	19	95	3	15


- (1) Kaltwassertemperatur: 10°C, Speichertemperatur: 50°C, ohne Elektro-Heizeinsatz
- (2) Kaltwassertemperatur: 10°C, Speichertemperatur: 50°C, mit 3 kW Elektro-Heizeinsatz

eHP-Mono 390/690

Monoblock Luft-/Wasser-Wärmepumpe

Daten			AWHP 8 TR	AWHP 11 TR
Abmessungen (Höhe x Breite x Tiefe)		mm	1220 x 1050 x 480	
Gewicht		kg	100	131
Stromversorgung (V/Phase/Hz)		V/Phase/Hz	400/D	reiph./50
Max. Betriebsstrom		А	11,5	13,0
Elektrische Absicherung		А	16,0	16,0
ErP Daten (Heizbetrieb):	Pdesign	kW	8,5	10,0
Mitteltemperaturanwendung bei	SCOP		3,47	3,37
durchschnittlichen Klimaverhältnissen	η_{S}		136	132
	Klasse		A++	A++
ErP Daten (Heizbetrieb):	Pdesign	kW	8,5	10,0
Niedertemperaturanwendung bei	SCOP		4,3	4,29
durchschnittlichen Klimaverhältnissen	η_{S}		169	169
	Klasse		A++	A++
Heizbetrieb: A7/W35	Leistung	kW	9,0	11,2
	COP		4,51	4,54
	Stromverbr.	kW	1,996	2,467
Heizbetrieb: A7/W55	Leistung	kW	9,0	11,2
	COP		2,78	2,7
	Stromverbr.	kW	3,237	4,148
Heizbetrieb: A2/W35	Leistung	kW	8,5	11,2
	COP		3,36	3,34
	Stromverbr.	kW	2,53	3,353
Max. Vorlauftemperatur		°C	60	60
Nenndurchflussmenge (A7/W35, ∆T=5K)		kg/min	25,8	32,1
Nenndurchflussmenge (A7/W55, ∆T=8K)		kg/min	16,1	20,1
Schallleistung (A7/W55)		dB(A)	58	60
Kältemittel			R410A	
Kältemittelfüllmenge		kg	2,4	3,3
CO ₂ Äquivalent		t	5,011	6,89
Außentemperaturbereich heizen (min./max)		°C	-20)/+35

- A Wärmepumpenvorlauf R1
- 3 Wärmepumpenrücklauf R1

Hinweis: Führen Sie im Wasserleitungssystem Maßnahmen gegen Einfrieren durch. (Isolation von Wasserrohren, Pumpensicherungssystem, Verwendung eines bestimmten Prozentanteils von Ethylenglykol anstelle normalen Wassers) Isolieren Sie die Wasserleitungen richtig. Der Leistungsgrad kann beeinträchtigt werden, wenn die Isolierung unzureichend ist.

Remeha Hybridsysteme

Remeha GmbH

Rheiner Straße 151 48282 Emsdetten

T +49 2572 9161 0

F +49 2572 9161 102

E info@remeha.de

BDR THERMEA GROUP

Technische Änderungen und Irrtümer vorbehalten! Ref. 40000497 Stand: 09/2019

das Gefühl von Wärme